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Abstract. We use the replica method in order to obtain an expression for the variational free energy of an
Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global
order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions
of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the
random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions.
In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the
paramagnetic solution is fully stable in a sufficiently large random field.

PACS. 75.10.Nr Spin-glass and other random models — 89.75.-k Complex systems

1 Introduction

Magnetic systems with quenched disorder, including spin
glasses and ferromagnets in a random field, have been in-
tensively studied during the last decades [1]. There are
many applications of these disordered systems, ranging
from the study of the behavior of random magnets, which
is a traditional ground test for the ideas of statistical me-
chanics, to the analysis of different sorts of optimization
problems in distinct areas of science. The mean-field ver-
sion of an Ising spin glass, with Gaussian distribution
of exchange interactions, also known as the Sherrington-
Kirkpatrick model, which can be solved by the replica
method, displays a low-temperature glassy phase, char-
acterized by the instability of a replica-symmetric solu-
tion, which indicates the need of breaking replica symme-
try and the existence of many ultrametrically organized
states. In contrast to this rich behavior, the mean-field,
Curie-Weiss, version of an Ising ferromagnet in a random
field (RFIM), which can be solved without recourse to
the replica method, leads to rather uninteresting, replica-
symmetric, exact solutions. There have been, however,
some indications that a ferromagnet in a random field may
have a glassy behavior.

We were motivated to look again at this problem by a
number of early and some more recent investigations of the
RFIM. De Almeida and Bruinsma [2] have done some cal-
culations, beyond the usual Curie-Weiss, mean-field, ap-
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proximation, for analyzing the behavior of a bond-diluted
Ising antiferromagnet in a field. For large dimensionality,
these calculations lead to the presence of a glassy region
in the applied field versus temperature phase diagram,
between paramagnetic and ordered phases, which can be
shown to disappear in the limit of infinite dimension. On
the basis of the equivalence, at a mean-field level, between
the critical behavior of a ferromagnet in a random field
and of a dilute antiferromagnet in a uniform field, this re-
sult gives an indication of the possible existence of a glassy
phase in the RFIM. A glassy behavior is also present in
a recent “extended mean-field” calculation by Pastor and
collaborators [3] for the phase diagram of the RFIM. These
results are claimed to agree with earlier work of Mézard
and Young [4] using a screening approximation in order to
characterize the instability of the replica-symmetric solu-
tions, to lowest order in 1/m, in a renormalization-group
calculation for an m-component spin ferromagnet in a ran-
dom field. It should mentioned that calculations for the
RFIM on a Bethe lattice already indicate a rich ground-
state structure [5] and peculiar hysteresis effects [6]. Also,
field-theoretical renormalization-group calculations for a
soft-spin version of the RFIM, which were confirmed by a
formulation of the dynamics, have shown the need to in-
clude extra terms involving replicas with different indices,
which in turn may lead to an instability of the replica-
symmetric solution in the paramagnetic region [7]. The
prediction of a glassy phase in the calculations beyond
the usual mean-field approximation were the main moti-
vation to revisit this problem. We then decided to use a
model devised by Viana and Bray [8], which is designed
to gauge the effects of the (finite) connectivity of a lattice.
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According to the original work of Viana and Bray, we
consider an Ising model with pair interactions J;;, between
all sites 4 and j, such that J;; = J > 0, with probability
¢/N, where N is the total number of sites, and J;; = 0,
with probability 1 —¢/N. This choice of interactions gives
rise to the so-called Viana-Bray lattice. The parameter
¢ > 0 can be regarded as the (finite) mean connectivity per
site. The solutions of an Ising spin-glass on the Viana-Bray
lattice have been first analyzed in the vicinity of the transi-
tion temperature [8]. The more involved low-temperature
behavior has been considered by Kanter and Sompolin-
sky [9], and Mézard and Parisi [10]. The analysis of sta-
bility of the replica-symmetric solutions near percolation
(¢ = 1) has been carried out by de Dominicis and collabo-
rators [11]. Although there are calculations for the RFIM
on a Bethe lattice, there is no comprehensive analysis on
a graph as the Viana-Bray lattice. According to the pre-
vious work for the Ising spin glass, we introduce a global
order parameter and formulate the replica-symmetric so-
lutions for this problem in terms of an integral equation. In
the ground state, and under some conditions on the form
of the random fields, we show that the replica-symmetric
solutions can be written as a series expansion. We have
been able to perform a detailed analysis of stability of
this replica-symmetric solution. In a sufficiently strong
random field, the explicit calculation of the eigenvalues
of a functional Hessian form shows the stability of the
paramagnetic solution, which seems to preclude the exis-
tence of a glassy phase (in contrast to earlier expectations
and the results of Pastor and collaborators [3]). Some nu-
merical calculations confirm these findings for the param-
agnetic solution, and indicate that the replica-symmetric
ferromagnetic solution is also stable in the ferromagnetic
region of the phase diagram.

The layout of this paper is as follows. In Section 2, we
define the model and formulate the replica-symmetric so-
lutions in terms of an integral equation for the global order
parameter. The analysis of stability of the paramagnetic
solution is reported in Section 3. Some conclusions, and
connections with recent work, are presented in Section 4.

2 Formulation of the problem

The ferromagnetic Ising model on the Viana-Bray lattice
is given by the Hamiltonian

E Jijoio; —

(45)

N
ZHiUia (1)
i=1

where (ij) refers to a pair of sites, o; = +1 for all sites,
and {J;;} and {H;} are sets of independent, identically
distributed, random variables, associated with probability
distributions

pr(Jy) = 56Uy =D+ (1= ) 500, @)
and
pir () = 36 (H; — Hr) + 50 (Hi+ He), (3)
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where J, ¢, and Hg are positive parameters. This distri-
bution of exchange interactions is supposed to mimic a
lattice of mean finite connectivity c.

Using the replica method, it is not difficult to write
the variational free energy [11]

1 . 1
fzaili%ﬁ{

Z Z qu‘lf
r= 0(041’ ,a,)
- m/ dHpy (H) Try exp |G ({04}) +5HZ%] }
-0 a=1

(4)

where 8 =1/ (kgT), T is the temperature, n is the num-
ber of replicas,

b, = cosh” (BJ) tanh" (8J), (5)
and the trace is taken over the set of replica spin variables
{0 }. The parameter qq, ... «, is the expected value of the
product o, ... 04, . The global order parameter G ({o4})
is defined as

In the n — 0 limit, the minimization of this variational
free energy with respect to the set of variables {ga,....a. }
leads to the stationary conditions

1 [T
Qarar = 5 dHpy (H) Tro0q, .0,

.....

X exp

G({oa}) + BH Z aa] )

where

—+oo
Za :/ dHpp (H) Tr, exp

— 00

G ({oa}) +ﬁHZaa] :
B

In the context of the replica-symmetric Ansatz, we define
an effective field h, associated with an effective probability
distribution p (h), which is equally applied on all of the
replica spin variables. We then write

+oo
Qon,. oo = / dhp (h) tanh"” (8J), (9)

— 00
from which we have

p(h) /+°° dHpy (H) /+°°d—y

- . o7
X exp [z‘y(h ~H)+G (%) - c] . (10)

Depending on the quantity of interest, it may be more
convenient to work either with the global order parameter
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G or with the effective probability distribution p. In the
replica-symmetric context, it is easy to see that

G({o.}) =G <Z aa> .

Therefore, taking into account the double-delta distribu-
tion (3), the extremization of the variational free energy
is reduced to the problem of searching the solutions of the
non-linear integral equation

p(h)/+OOd—y

oo 2T

(11)

X exp {ithr Incosh (iyHg) —c+ G <%)] , (12)

where

+oo
G (y) = / dzp (z)

— 00

x exp {y tanh ™! [tanh (4.J) tanh (Bx)]}. (13)

In the context of the replica-symmetric Ansatz, it is known
that the Viana-Bray spin-glass problem, with a symmet-
ric distribution of exchange interactions and no external
fields, can also be formulated in terms of a similar integral
equation for the distribution of the effective fields [9,10].
In this spin-glass case, if we restrict to the analysis of the
ground state (8 — 00), it is possible to write an analytic
solution as a sum of delta functions peaked at integer mul-
tiples of the variance J of the distribution of exchanges. In
the present case, however, a similar solution requires the
additional assumption that Hg/J is restricted to the set
of integer numbers. Under these conditions, in the ground
state, the integral equation (12) can be exactly solved in
terms of sums of delta functions.

In the ground state (8 — ©0), it is possible to show
that

G (%) _ c/J dap (x) exp (—iyJ)

— 00

+J oo
+ c/ dxp () exp (izy) + c/ dxp () exp (iyJ) .
—J +J
(14)
Assuming that Hg = wJ, with w = 0,1,2, ..., we can also
write
G (%) = A+ Bexp (iyJ) + Cexp (—iyJ), (15)
with
c=A+DB+C, (16)
1, 1 C\“? o\ 2
ZA = Zp(A=0) = =
“A = e (B) +(B) L (2\/30),

(17)
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and
1 C ! c(l-t] =
1p_1 (4 c>/ (t0)
- ; dte'*™™{ 5
ca-n1"%
x Lo 1 (2 BC(1 ft)) + {%}

X Lypr (2 BC(1—t)>}, (18)

for w > 1, where I, (z) is the modified Bessel function.
Both ferromagnetic (B # C') and paramagnetic (B = C)
solutions are represented by this expression. The effective
probability distribution p is written as a sum of delta func-
tions,

s =3 ad(h k). (19)
k=—o00
where
ay = % exp(4 —¢)
x (g) - Tore (2\/%) n (g) = T, (2@) .
(20)

3 Analysis of stability

The analysis of stability of the replica-symmetric solutions
is based on the investigation of the eigenvalues of the Hes-
sian matrix associated with the variational free energy,
given by equation (4), which can be rewritten as

BrGI—5=2 >

=0 (a1,...,0)

G ({o4}) + Incosh <BHR i oa>] . (21)

a=1

2—2n
2¢b,

[Tro0a, .00, G ({oa})]?

— InTr, exp

We then write

*pf |G
"0G ({00}) 6G ({7a})

which can be cast in the form

Tr

¢ ({ra}) = Ap({oa}), (22)

? ({sa}) = AT exp lﬁ‘] Z Tasa] o {7a}) + Z—CGTrT

a=1
G (7) + Incosh (BHRF) + BJ Y Tusa
a=1
- ZLGG (8) Tr, exp G (7) + Incosh (BHR)| ¢ ({7a})
(23)

X exp

¢ ({7a})
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where

n n
A:ZTav g:ZSa (24)
a=1 a=1
In the n — 0 limit, it is easy to show that there is a
constant eigenvector, ¢ ({sq}) = constant, with 1/c as
the associated eigenvalue.

According to the work of De Dominicis and Mottishaw
[11], in the context of the replica-symmetric approxima-
tion the space of 2™ eigenvectors is spanned by a set of
eigenvectors parameterized by functions of two variables,
of the form

({UCE}') Plua} (0'; QUu) , (25)
where
n n
=) 0a  Gou= ) Oaka (26)
a=1 a=1

and the spin configuration {u } is used to label the eigen-
vectors. From equation (23), in the n — 0 limit, we derive
an integral equation for the eigenvalues,

el ]

cosh (Bu + pv) n/2 im ,
X [m] exp |G (F) —imu — irv

+ In cosh (iHRm)] Ou (@, K)

dudv

ou (T,y)
exp

g B

oo oo dudv

* c/[oo dmdr /[oo (271')2

X {)\ + exp [G (%) + Incosh (iHgm) — c} }

x exp (imu + irv) [Zzz}ﬁ Egj i‘ gz i— gzi] =

X [cosh (BJ + Bu + Bv) cosh (BJ — fu — ()] g
cosh (8J 4 Bu — (o) e
x [cosh (BJ — Bu + ﬂv)}
X [cosh (BJ + Pu — pv) cosh (BJ — Pu + 5”)]7%

o (55)

First, we find the longitudinal eigenvalues, in other
words, the eigenvalues in the subspace spanned by
Ptuat (05Gou) = ¢ (7). In the ground state, it is not dif-
ficult to see that these longitudinal eigenvectors can be
written as

oL (%) = Ap + Broxp (iz]) + Cpexp (—iaJ) . (28)

The problem reduces to the calculation of the eigenvalues
of a 3 x 3 matrix, which are given by Ay = 1/¢, associated
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with the constant eigenvector, and

1

A3 = p (1-A)£D, (29)

where A =
(ala_1)1/2 is given by the expression

cag is given by equation (17), and D =

D:%exp(A—c){ (%)‘” w1 (2\/_) we— 1(2@)
+12 (2@) +12,, (2@) + <%> N
S (2\/13_0) oot (2\/3_0) }1/2, (30)

with the coefficients A, B, and C, given by equations (16—
18). These longitudinal eigenvalues, however, lead to fa-
miliar mean-field results. At small values of the random
field, the paramagnetic solution is unstable, while a ferro-
magnetic solution is stable. At large values of the random
field, there is only a (stable) paramagnetic solution as in
the case of spin glasses on the Bethe lattice (note that,
at sufficiently large random fields, that is, for Hp — oo,
we have A, D — 0). The critical border separating these
paramagnetic and ferromagnetic phase is of order ¢J (see
Tab. 1 for specific values ).

We now turn to the eigenvalues associated with the
transversal sector. For u = 0, and an eigenvector of the
form

BB
+ Bay exp (iyJ) + Ba_ exp (—iyJ) + Cy4 exp (ixJ + iyJ)
+ Cy_exp (izd —iyJ)
+ C_yexp(—izd +iyJ) + C__exp (—ixJ —iyJ),
(31)

the problem is reduced to the calculation of the eigenval-
ues of a 9 x 9 matrix. The nine eigenvalues of this transver-
sal sector are given by A = 1/¢, associated with a con-
stant eigenvector,

Pu=0 (zx zy> = Ao + Byt exp (izJ) + Bi— exp (—izJ)

1
AT2.T3 = p (1-4), (32)

1
AT4,T5,T6 = p (1-A)+ D, (33)

and 1
AT7.78,T9 = p (1-A)-D, (34)

which should be compared with equation (29) for the non-
trivial eigenvalues of the longitudinal sector. In contrast
to the spin-glass case, the eigenvalues of this transverse
sector do not lead to any additional instability. According
to a numerical analysis of these eigenvalues, the replica-
symmetric paramagnetic solution remains stable for suffi-
ciently large random fields and the ferromagnetic solution
is stable in its region of existence (see Tab. 1).
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Table 1
Hgr/J 0O 1 2 3 4 c
Apm —0.1798 —0.0661 0.1030 0.2253 0.2919 3
Afm  0.2738 0.1157 - —— - ———=3
Apm —0.1876 —0.1159 0.0129 0.1212 0.1906 4
Afm  0.2302 0.1669 - — = - ——=— 4
Apm —0.1876 —0.1377 —0.0369 0.0578 0.1258 5
Afm  0.1930 0.1666 0.0819 ——= —=—-5
Apm —0.1847 —0.1476 —0.0667 0.0161 0.0808 6
Afm 0.1642 0.1529 0.1153 - —-———= 60

The analysis of the transversal sector with p # 0 can
be carried out with same Ansatz,

o (58) - By () e (55).

0cZ
(35)
Although the secular matrix becomes infinite, it is easy
to see that the eigenvalues are still given by the same
expressions of equations (32-34). Again, we conclude that
the replica-symmetric solution is stable in the presence of
sufficiently large random fields.
In Table 1, we list the numerical solutions for the small-
est eigenvalue, given by equation (34), with ¢ = 3,4,5,
and 6, for the paramagnetic (pm) and ferromagnetic (fm)
solutions. There is no simultaneous instability of both so-
lutions and thus no indication of breaking of replica sym-
metry. Note that the dashes in this table correspond to
the absence of a ferromagnetic solution (in which case the
paramagnetic solution is stable).

4 Conclusions

We have investigated the stability of the replica-symmetric
solutions of a random-field Ising ferromagnet on a lat-
tice of finite mean connectivity. At low temperatures and
for sufficiently large random fields, the analysis of the
eigenvalues of the Hessian matrix associated with the
variational free energy leads to stable replica-symmetric
paramagnetic solutions (at smaller random fields, the
replica-symmetric ferromagnetic solution is stable). The
present calculations do not support the existence of a
glassy phase, as suggested by earlier proposals [2—4]. How-
ever, a more detailed analysis of the phase diagram, in
terms of field and temperature, still demands consider-
able work, including both analytical and refined numeri-
cal calculations. The assumption of a discrete distribution
of effective fields, which was written as a sum of delta
functions, may not capture the subtleties of the glassy be-
havior. As in the spin-glass case, we cannot rule out the
existence of field-induced glassy and mixed ferromagnetic-
glassy phases.

It is interesting to point out a connection with the
recent work by Pastor and collaborators [3]. A truncation
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of the variational free energy, given by equation (4), leads
to a “high-temperature approximation,”

1 1
fapp = ﬁ hm { tanh (6J) Zm

+oo
—|— 2 [tanh (5.])] Z Qop —In {/ dHpy (H) Zapp] }7

a<f
(36)

where

Zapp = Try exp {ctanh (8J) Z Oa

+c[tanh (B)]° Y qapoacs + BH Z aa}

a<f

The results of Pastor et al. [3] for the paramagnetic phase
are recovered if we introduce the additional approxima-

tion tanh 3J = BJ + O {(ﬁJ)B},
terms. In this approximation, for a Gaussian distribution

of random fields with variance Hp, the replica-symmetric
paramagnetic phase is unstable along the field axis.

and discard higher-order
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